

GUIDE

Plasmid-EZ Quick Start Guide

azenta.com | genewiz.com

Table of Contents

1. Getting Started	03
Viewing project report	
Opening sample reports	
2. Viewing Your Plasmid	04
Annotation map of contig	
Opening the GenBank file in SnapGene Viewer	
Viewing the nucleotide sequence, amino acid sequence and annotation	
Viewing assembly .ab1 files	
Reviewing pairwise alignments of consensus files	
3. Assessing the Quality of Your Data	08
Viewing the read-length distribution and quality scores	
Viewing per base confidence scores	
Viewing the virtual gel	
4. Variant Calling	10
Viewing variants by base	
5. Common Factors Affecting Plasmid-EZ Assembly	11
Concentration and sample quality	
Homopolymeric repetitive regions	
Methylation sites	

GUIDE

azenta.com

Getting Started

VIEWING PROJECT REPORT

To start, click on the 30-xxxxxxx.QC.html file. This file provides an overall QC report, has links for individual sample reports, and acts as a launching point for accessing all reports.

OPENING SAMPLE REPORTS

From the QC report, you can click on the sample name to open the sample report.

1 <u>Negative</u> 85 244.48 10842 166 182					wiean_length	win_length	Sample	Lane
	206.25	182	166	10842	244.48	85	Negative	1
2 pGem 105 2195.73 15695 1014.25 2600.5	3293	2600.5	1014.25	15695	2195.73	105	pGem	2

The following table reports statistics on mapping of raw sequencing reads to the reference-based consensus or de novo assembled contig.

annotation assembly ab1

📒 genbank

raw_fastq

sample reports variation Control-QC.html

📒 assembly_fasta 📁 assembly_fastq

📁 quality_assessment

Table columns are as follows:

assembly ab1 assembly fasta

📁 assembly_fastq

📁 quality_assessment raw fastq sample reports variation Control-QC.html

Plasmid-EZ_interpretation_guide.pdf

aenbank

1. Sample: Sample name.

- Sample sample manne.
 Reference_Length: Length of the reference sequence, if a reference sequence was provided.
 Consensus_Length: Length of the reference-based consensus sequence.
 Reference-based consensus is only reported if a reference sequence was provided and a reference-based consensus sequence could be generated. If a reference sequence was provided but a reference-based consensus sequence <u>could not</u> be generated, then "-" is shown and the table cell is highlighted. 4. Contig_Length: Length of the *de novo* assembled contig sequence.
- De novo assembled contig sequence is only reported if no reference sequence was provided, or reference-based consensus sequence could not be generated. If reference-based consensus sequence could not be generated, but de novo assembly was successful, then Contig_Length is reported and the table cell is highlighted.

- S. Total, Reads: Total number of reads passing Nanopore sequencing quality assessment.
 S. Total, Reads: Total number of reads passing Nanopore sequencing quality assessment.
 Mapped_reads: Number, and percentage, of total reads successfully mapped to the reference, if provided, or *de novo* assembled contig, sequence.
 Tumapped_reads: Number, and percentage, of total reads could <u>not</u> be mapped to the reference, if provided, or *de novo* assembled contig, sequence.
 Supplementary. mappings: Number, and percentage, of total reads that span the 3-prime -5-prime boundary of the linearized contig sequence.
 Secondary_mappings: Number, and percentage, of total reads that map to more than one location on the linearized contig sequence.

Calculation of percentages are based on the "Total_Reads" value reported.

Sample	Reference_Length	Consensus_Length	Contig_Length	Total_Reads	Mapped_reads	Unmapped_reads	Supplementary_mappings*
Negative	n/a	n/a	0	178	-		
pGem	n/a	n/a	3197	5518	5198 (94.2%)	320 (5.79%)	3473 (62.93%)

"Supplementary" reads are those reads that span the 3-prime - 5-prime boundary of the linearized contig sequence. "Secondary" reads are those reads that map to more than one location on the linearized contig sequence. Calculation of percentages are based on the "Total_Reads" value reported.

Individual sample reports can also be accessed by going to the sample folder.

Then, click on the AssemblyReport.html file.

Plasmid-EZ: control

Plasmid-EZ_interpretation_guide.pdf

GUIDE

Viewing Your Plasmid

2

ANNOTATION MAP OF CONTIG

In the sample report, the first thing you will see is an annotated plasmid map for the contig assembled. Hovering over the map will pull up a summary of the region, which is also listed in the table below the map.

Data extracted from /output/pGem_contig_annotation.csv

Feature	Туре	percent identity	percent match length	Description
f1 ori	rep_origin	100.0	100.0	f1 bacteriophage origin of replication; arrow indicates direction of (+) strand synthesis
AmpR promoter	promoter	100.0	100.0	bla
AmpR	CDS	99.76	100.0	β-lactamase; bla; confers resistance to ampicillin
ori	rep_origin	99.83	100.0	high-copy-number ColE1/pMB1/pBR322/pUC origin of replication
MCS	misc_feature	100.0	100.0	pUC18/19 multiple cloning site
lac promoter	promoter	100.0	100.0	promoter for the E. coli lac operon
CAP binding site	protein_bind	100.0	100.0	CAP binding activates transcription in the presence of cAMP. E. coli catabolite activator protein
T7 promoter	promoter	100.0	100.0	promoter for bacteriophage T7 RNA polymerase
SP6 promoter	promoter	100.0	100.0	promoter for bacteriophage SP6 RNA polymerase
lac operator	protein_bind	100.0	100.0	The lac repressor binds to the lac operator to inhibit transcription in E. coli. This inhibition can be relieved by adding lactose or isopropyl- β -D-thiogalactopyranoside (IPTG). lac repressor encoded by lacI
lacZα	CDS	100.0	90.80	LacZ α fragment of β -galactosidase; lacZ fragment
bom	misc_feature	100.0	70.92	basis of mobility region from pBR322
lacI	CDS	100.0	8.58	lac repressor; lacl; The lac repressor binds to the lac operator to inhibit transcription in E. coli. This inhibition can be relieved by adding lactose or isopropyl-β-D-thiogalactopyranoside (IPTG).
rop	CDS	100.0	18.75	Rop protein

OPENING THE GENBANK FILE IN SNAPGENE VIEWER

A copy of the annotation map and sequence are provided in the sample folder in GenBank format. This file can be opened in any plasmid viewer program like <u>SnapGene Viewer</u>.

	annotation
-	assembly_ab1
-	assembly_fasta
-	assembly_fastq
-	genbank
-	quality_assessment
-	raw_fastq
-	sample_reports
-	variation
6	Control-QC.html
4	Plasmid-EZ_interpretation_guide.pdf

Viewing Your Plasmid (Continued)

Opening the GenBank file (.gbk) in SnapGene Viewer will present you with the following screen upon opening. This shows you a map from the report as well as all restriction enzyme sites.

VIEWING NUCLEOTIDE SEQUENCE, AMINO ACID SEQUENCE AND ANNOTATION

Clicking the sequence tab at the top of the screen (highlighted in a red box below) will open the nucleotide sequence, along with the annotation and amino acid sequence for all coding regions.

Viewing Your Plasmid (Continued)

PLASMID-EZ QUICK START GUIDE

ACGCGAATTTAA

VIEWING ASSEMBLY_AB1 FILES

The ab1 files can be utilized to assess quality and identify positions with mixed base-calling.

The ab1 files are fragmented into 2kB length files; therefore, each sample will be composed of multiple ab1 files.

A T G C G G T A T T T T C T C C T T A C G C A T C T G T G C

Viewing Your Plasmid (Continued)

REVIEWING PAIRWISE_ALIGNMENT OF CONSENSUS FILES

If reference file is provided on the order form, we will run reference-based analysis and provide a pairwise alignment to compare the assembled contig to the reference file provided. The example below shows alignment between the reference and consensus file with the highlighted region showing percentage match between the files.

annotation	Aligned using light en	terral dearthm - Dear then edited	-		
			Formet: Identities :	1	-
🚬 assembly_ab1	reference-1	1 ACTCTTCCTTTTTCAATATTATTGAAGCATTTATCAAGGTTATTGCCCGATACCTATTTGAATGTATTTAGAAAAAAAA		dentical Differe	n.
🚞 assembly_fasta	reference-1	2 121 AGTGCCACCTGACGTCTTAATTAATGCAAAGATGGATAAAGTTTTAACCAGAGAGGAATCTTTGCAGCTAATGGACCTTCTAGGTCTTGAAAGGAGGGGAATGGCTCCGGTGCCCGTC 206 AGTGCCACCTGACGTCTTAATTAATGCAAAGGATGGATAAAGTTTTAACCAGGAGAATCTTTGCAGCTAATGGACCTTCTAGGTCTTGAAAGGAGGGGAATGGCTCCGGGGACTGGGCCCGGC 206 AGTGCCACCTGACGTCTTAATTAATGCAAAGGATGGATAAAGTTTTAACCAGGAAGTGTTTGCAGCTAATGGACCTTCTAGGTCTTGAAAGGAGGGGGAATGGCTCCGGGGAATGGCTCCGGGGAATGGCTCCGGGGGAGGAGGAGGAGGAGGAGGAGGAGGGGGAGGGGGG		Save as Default Parameters	
accembly facto	1-consensus	11111111111111111111111111111111111111	Matric: Gap open penalty: Gap extend penalty:		
osenibly_lose	reference-1	241 A0T000CA0A0C0CACATCOCCCACATCCCCC0A0AA0TT0000000A0000CC00CAATOAACC00T0CCTA0A0AA00T0000C00000TAAACT000CAAA0T0AT0AT0AT0AT0C0T0ACT00C 300	Length: Identity: Gaos:	5936 4754 / 5936 (79.4%) 0 / 5986 (0.0%)	٦
genbank .	r-consensus		Description:		-
🔁 pariwise_alignment	1-consensus	30 1 COUCCI II I COURSES I SEGUESSABAACCE I A A AND SCARTARI COLO DAACSI I LI II I COUACESSE I SCUSSECABAACADU AND SCARTARI SCUSE I COUCCI I I I COURCE SE 36: TCOCCTTTTTCCCARGETAGGGGGGBAAACCETATATAATGCGCAGTAGTCOCCTGAACGTCTTTTTCGCARGEGGTTGCCGCCAGAACACADU AND SCACTGTCTTCCCGCG 450			
📁 quality_assessment	reference-1 1-consensus	48. OSCETOSCETTATOSOGITATOSCECTTOCOTOCCTORATTACTECACCTOCTOCATOCATACOTOCATOCATOCTOATECTOATOCCASOCTTOSOAAGAAGTACOTOCAGOAGAAGTACOGOAGAAGTACOTOCAGOAGAAGTACOCAGOAGAAGTACOTOCAGOAGAAGTACOCAGOAGAAGTACOTOCAGOAGAAGTACOTOCAGOAGAAGTACOTOCAGOAGAAGTACOTOCAGOAGAAGTACOCAGOAGAAGTACOTOCAGOAGAAGTACOTOCAGOAGAAGTACOTOCAGOAGAAGTACOTOCAGOAGAAGTACOTOCAGOAGAAGTACOAGAAGTACOAGAAGTACOAGOAGAAGTACOAGAAGAAGTACOAGAAGAAGTACOAGAAGTACOAGAAGAAGTACOAGAAGAAGTACOAGAAGAAGAAGTACOAGAAGAAGAAGAAGTACOAGAAGAA			
🚬 raw_fastq	reference-1	WD GGGCTTAAGGABGCGCCTTGGCCTCGFGCTTGAGTTGAGGCCTGGGCCTGGGGCGGCGGGGGGGGGG			
sample_reports	1 consensus	en coortaasaacoorteseeteteatetteastteaseeteseeteseeceseteseseeteseaaateteseetese			
📒 variation	reference-1 1-consensus	72 CCATTTAAAATTTTTGATGACCTGCTGCGACGCTTTTTTCTGGCAAGATAGTCTTGTAAATGCGGGCCAAGATCTGGAACTGGAACACTGGTATTTCGGTTTTTGGGGCCGCGGGGGGGG			
Control-QC.html	reference-1 1-consensus	40 CCC9T0CGTCCCA0CGCACATGTCC0009A0900000CCT0C5040C0000CCCGC9AAAT080A40000TAGTCTCAA0CT00CC8CCTCT003TGCCT00CCC0CCC0C4 900 90 CCC9T0CGTCCCA0CGCACATGTCC0009A0900000CCT005040C0000CCT0C504AAT080A40000TAGTCTAA0CT00CC8CCTCCT003TGCCT00CCC0CCT000C00CC0C40 90 CCC9T0CGTCCCA0CGCACATGTCC0009A00000CCT005040C000CCT005040C0000TAGTCTCAA0CT00C00CT0CT003TGCCT00CC0C0CC0C40 90 CCC9T0CGTCCCA0CGCACATGTCC0009A00000CCT005040C000CCT005040C0000TAGTCT0040C000TAGTCT0040C00CT00C0C00C00C000C0 90 CCC9T0CGTCCCA0CGCACATGTC0009A00000CCT0050000CCT005000C000C000C000C000			
Plasmid-EZ_interpretation_guide.pdf	reterence-1 1-consensus	961 0TATCOCCCCCCCTG00C00CAGGCTG0CCCGCTC0CCCCCGTCGCTCGCGCCCCGCTCCCGAGGAGGCCCAAAAGAGGCCGCCCCGCGCCCGAGGAG			
	reference-1	1001 ACCODECEDETEACTCACCCACACAAAGGAAAAGGCCCTTTCCGTCCTCACCCTCGCTCCACCGACCACCCGGCCCCCCCC	Created: Today	Last Modified: Today	
	Aligned Sequences *	Editing Parvise Algoments		8	Side Panel

- Why are NNNs in the consensus file? The Ns indicates a mismatched or missing region in the consensus file compared to the reference file. Evaluation of the ab1 or variation file for the positions with NNNs will determine whether the region is truly missing from the consensus file or of too low quality to match the reference file.
- The reference-based analysis is started right after sequencing, with the missing region during the analysis denoted by N and tallied into the total length count. Therefore, the AssemblyReport will show a plasmid size same as the reference file. The sample consensus Genbank file will show the total size to also be same as the reference file, but with the region showing the Ns (or the missing region) to be grayed out.

3 Assessing the Quality of Your Data

VIEWING THE READ-LENGTH DISTRIBUTION AND QUALITY SCORES

Going back to the sample report (AssemblyReport.html), you will see the sequencing quality metrics, including the read-length distribution (red graph), the Q-score distribution (blue graph), and the percentage map reads (section 3).

The higher the bar, the higher the confidence for the base call at this position. If a bar is lower, it could indicate either low-quality sequence data or the presence of a polymorphism at the site.

VIEWING THE VIRTUAL GEL

The virtual gel is also available to quickly visualize the sample quality.

The virtual gel provides a visual representation of the read lengths and the intensity of each found in the sample. Please note the gel image may not represent all read lengths in the sample and should only be used as a visual representation and not for analysis.

Variant Calling

4

VIEWING VARIANTS BY BASE

We provide a variant Excel file (*Contig-readCounts-variation.xls*) that has the number of reads for each base.

		annotation
		assembly_ab1
	-	assembly_fasta
	-	assembly_fastq
	-	genbank
	-	quality_assessment
	-	raw_fastq
	-	sample_reports
Γ	1	variation
	G	Control-QC.html
	2	Plasmid-EZ_interpretation_guide.pdf

Any bases with a second nucleotide represented in >10% of reads are highlighted in yellow. This file also provides you with the number of reads that have insertions or deletions for that base.

AZENTA LIF	E SCIENCES -	Plasmid-E	Z							
Color Legend:										
	>= 10% deviation									
				These	data	relate	to *rav	»* sequen	cing reads	
Position	Reference	Coverage	Α	Т	G	С	N	Insertions	Top Insertion	Deletions
1	Α	3435	3435	0	0	0	0	0	-	0
2	С	3440	0	0	0	3440	0	0	-	0
3	G	3454	0	0	3454	0	0	0	-	0
4	С	3463	0	11	0	3452	0	1	G (1)	0
5	G	3482	1	1	3477	3	0	4	C (2)	0
6	Α	3490	3488	1	1	0	0	0	-	0
7	Α	3492	3479	11	2	0	0	11	T (10)	0
8	Т	3499	13	3486	0	0	0	1	A (1)	0
9	Т	3502	0	3501	0	1	0	0	-	0
10	T	3506	0	3504	0	2	0	0	-	0
11	Т	3506	1	3491	0	13	0	27	A (15)	1
12	Α	3514	3475	2	10	3	0	1	AAAGG (1)	24
13	Α	3506	3500	0	3	0	0	9	G (4)	3
14	С	3507	7	3	17	3471	0	34	A (21)	9
15	Α	3518	3481	1	21	0	0	0	-	15
16	Α	3519	3510	0	9	0	0	1	TAC (1)	0
17	Α	3524	3519	2	2	1	0	0	-	0
18	Α	3525	3516	2	7	0	0	0	-	0
19	Т	3527	3	3514	2	7	0	3	G (2)	1
20	Α	3528	3504	2	8	8	0	28	T (21)	6

Note: This file is corrected for read quality; an uncorrected raw number of reads with each base can be found in the *readCounts-variantion.csv* file.

5 Common Factors Affecting Plasmid-EZ Assembly

CONCENTRATION AND SAMPLE QUALITY

In the unfortunate event your sample failed to produce an assembly, the sample folder will only contain the raw FASTQ reads and a summary report that includes the read length and quality of the data.

1	annotation
-	assembly_ab1
-	assembly_fasta
-	assembly_fastq
-	genbank
1	quality_assessment
-	raw_fastq
-	sample_reports
-	variation
G	Control-QC.html
	Plasmid-EZ_interpretation_guide.pdf

To provide a fast turnaround time at a low cost, we do not perform sample QC to determine why samples failed assembly. However, the most common reason for failure is the sample not meeting the required 50 ng/ul concentration. Low concentrations may lead to increased fragmentation during library preparation and/or a low number of reads generated for the sample. We strongly recommend checking the concentration of your samples on a Qubit or equivalent before sending samples to us to reduce the chance of failure.

Below on the left is the read length graph for a sample that failed and on the right is one that worked. Samples with a clear plasmid peak like on the right tend to assemble, while samples without full-length plasmid reads tend to fail assembly.

Common Factors Affecting Plasmid-EZ Assembly (Continued)

HOMOPOLYMERIC REPETITIVE REGIONS

Plasmid-EZ may at times show missing nucleotide following certain homopolymeric repetitive regions. In such cases, please review the variation file for the position to confirm possible insertion/deletion at the region. The example below showcases possible insertion of an additional T at the start of the homopolymeric region. For further confirmation, we recommend running a Sanger sequencing order for the regions to ensure complete coverage.

Position ReferenceCoverage		Α	Т	G	С	N	Insertions	Top Insertion	Deletions	
9095	G	773	0	1	771	0	0	292	T (162)	1
9096	T	774	0	496	0	0	0	0	_	278
9097	T	637	0	636	0	1	0	0	_	0
9098	T	709	0	709	0	0	0	0	_	0
9099	T	740	0	740	0	0	0	0		0
9100	T	750	0	750	0	0	0	0		0
9101	T	756	0	756	0	0	0	0	_	0
9102	T	769	0	768	0	0	0	0	_	1
9103	Т	771	0	771	0	0	0	0	_	0
9104	T	772	0	771	0	1	0	0		0

METHYLATION SITES

GATC, CCAGG and CCTGG sites are methylation sites in *E. coli*. These sites may show discrepancy and will require review of the variation file. If discrepancy is due to methyl GATC site, the variation file will show half A / half G for the position, as shown in the example below. In such cases, Sanger sequencing follow up may be needed for further confirmation for the base position. The image below shows a GATC methylation sites show mixed base calling with A/G. In this example, nucleotide G was called but for further validation a Sanger sequencing order may be needed.

Position	Reference	Coverage	Α	Т	G	С	N	Insertions	Top Insertion	Deletions
4240	G	2020	803	6	1149	14	0	63	A (43)	48
4241	Α	2070	2056	3	6	2	0	161	T (130)	3
4242	T	2069	73	1977	0	2	0	22	TC (9)	17
4243	С	2057	60	371	5	1615	0	21	T (21)	6

azenta.com | genewiz.com