
## GUIDE

# Plasmid-EZ Quick Start Guide





# Table of Contents

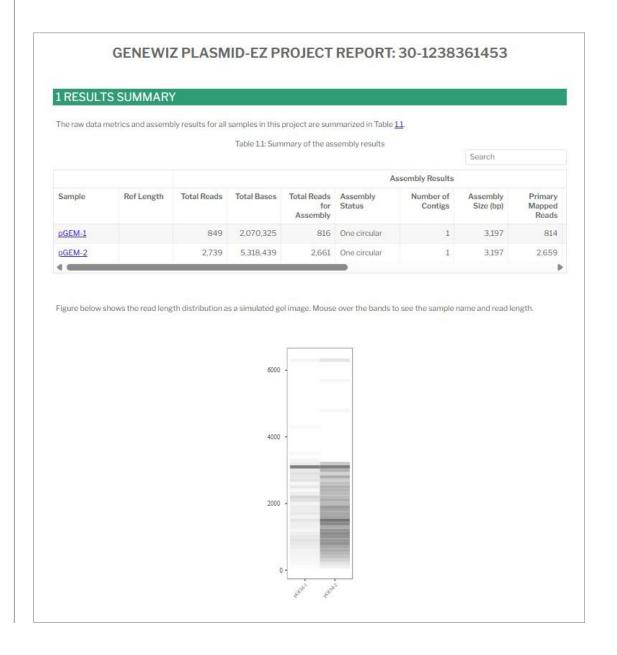
| 1. Summary of Deliverables                      | 03 |
|-------------------------------------------------|----|
| 2. Project Report Review                        | 04 |
| Viewing the Project Report                      |    |
| 3. Sample Report Evaluation                     | 05 |
| Sample Report                                   |    |
| Analysis Results                                |    |
| Annotation Map                                  |    |
| Annotation Table                                |    |
| Data Quality Control                            |    |
| Failed Assembly Report                          |    |
| 4. Assembled Contig Review                      | 09 |
| Genbank                                         |    |
| Assembly Fasta                                  |    |
| Assembly Fastq                                  |    |
| Assembly Ab1                                    |    |
| 5. Sample Coverage Assessment                   | 11 |
| Variation                                       |    |
| 6. Reference-Based Analysis                     | 13 |
| Coverage Analysis                               |    |
| Variants                                        |    |
| 7. Common Factors Affecting Plasmid-EZ Assembly | 15 |
| Concentration and Sample Quality                |    |
| Homopolymeric Repetitive Regions                |    |
| Methylation Sites                               |    |



# 1 Summary of Deliverables

| control_project_report.html | Project summary report in HTML format                                             |
|-----------------------------|-----------------------------------------------------------------------------------|
| raw_fastq                   | Raw data in zipped fastq format                                                   |
| assembly_fasta              | Assembled sequence(s) in fasta format                                             |
| assembly_fastq              | Assembled sequence(s) in fastq format                                             |
| genbank                     | Annotation in GenBank format                                                      |
| annotation                  | Annotated features in CSV format                                                  |
| assembly_ab1                | Assembled sequence(s) in abl format                                               |
| variation                   | Base count from the alignment of the raw reads to<br>the final consensus sequence |
|                             | Variant calling results in VCF format Index file for the VCF file                 |
|                             | Variant calling results in tab-delimited text format                              |
| sample_reports              | Sample report in HTML format                                                      |

# 2 Project Report Review


#### **VIEWING PROJECT REPORT**

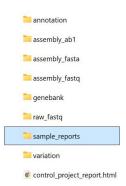
Start by clicking on the 30-xxxxxxxxx\_report.html file.

The file provides a results summary highlighting the read counts, assembly status, number of contigs isolated, mapped reads percentage, etc.

A virtual gel is provided to show the read length distribution for each sample.






# 3 Sample Report Evaluation

#### **SAMPLE REPORT**

Individual sample reports can be accessed from the sample\_reports folder.

Click the individual files to access the reports.

© Control-pGem\_report.html



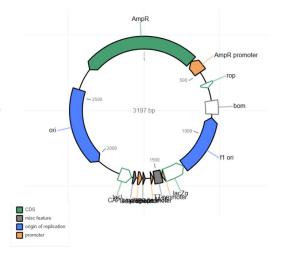
#### **ANALYSIS RESULTS**

The sample report lists the number of contigs assembled, their lengths, topology, mapped bases, total mapped base percentage and average coverage of the assembly.

If multiple contigs are identified, separate line items will be provided per assembled contig, including assembly information.

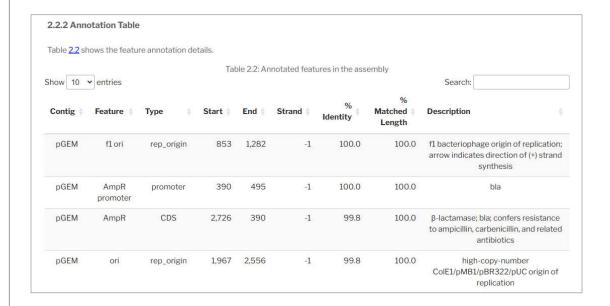
The most common topology will be circular, linear or failed. All possible topology are listed below:

- Circular → closed loop contig assembled
- Linear → two-ended contig assembled
- Multiple circular → 1circular contigs assembled
- Mixed → linear and circular contigs assembled
- Multiple linear → 1 linear contig assembled
- Failed → no assembly


Assembly QC is also provided, which shows the coverage by base position.

Any position of low coverage can easily be identified from the chart for further review in the ab1 or variation files.

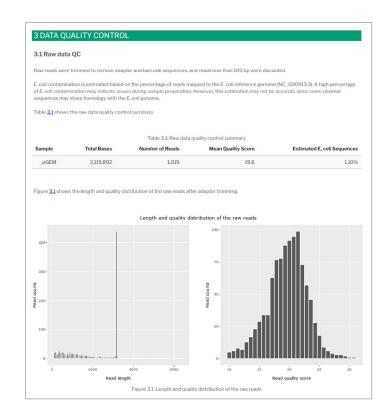
### **GENEWIZ SAMPLE REPORT** 1 SAMPLE INFORMATION Quote 30-1245406959 Sample pGEM 2 ANALYSIS RESULTS 2.1 Results summary $Preprocessed\ reads\ (see\ "Data\ quality\ control"\ section)\ were\ used\ for\ assembly.\ If\ the\ assembly\ is\ successful,\ the\ draft\ assembly\ is\ polished$ $using\ the\ preprocess\ reads\ by\ using\ Medaka.\ The\ preprocessed\ reads\ were\ then\ aligned\ to\ the\ polished\ assembly\ using\ Minimap2\ and\ small\ polished\ assembly\ using\ Medaka.\ The\ preprocessed\ reads\ were\ then\ aligned\ to\ the\ polished\ assembly\ using\ Minimap2\ and\ small\ polished\ assembly\ using\ Medaka.\ The\ preprocessed\ reads\ were\ then\ aligned\ to\ the\ polished\ assembly\ using\ Minimap2\ and\ small\ polished\ assembly\ using\ Medaka.\ The\ preprocessed\ reads\ were\ then\ aligned\ to\ the\ polished\ assembly\ using\ Medaka.\ The\ preprocessed\ reads\ were\ then\ aligned\ to\ the\ polished\ assembly\ using\ Medaka.\ The\ preprocessed\ reads\ were\ then\ aligned\ to\ the\ polished\ the\ polished\ the\ preprocessed\ the\ preproce$ variants were called using Clair3. Table 2.1 shows the assembly summary. Note that the Mapped Bases are based on the covered bases on the assembly, so it could be slightly more than the total bases in the preprocessed reads. Table 2.1: Summary of the assembly results Sample **Number of Contigs** Total Length Topology Mapped Bases % of Total Bases Average Coverage pGEM 1 3.197 circular 2.083.144 99.36% 652 2.3 Assembly QC 2.3.1 Coverage along the assembly Figure 2.1 shows the coverage of the assembly when reads are aligned back to the assembly. pGEM 600 Coverage 200 Position Figure 2.1: Coverage along the assembly


#### **ANNOTATION MAP**

The sample report also provides an interactive annotation plasmid map.



#### **ANNOTATION TABLE**


Within the report, below the plasmid map, is an annotation table with detailed information on each featured annotation segment. This table is optimal for reviewing the identity and length-matched percentage for each feature.



#### **DATA QUALITY CONTROL**

The data quality control section in the sample report provides the length and quality distribution of the raw reads.

As seen on the right, the left graph shows the read count by read length. Optimal results will show a single peak for the expected contig length with base level degradation (read length lower than 2 kB). The graph to the right shows the quality for the raw reads. For high quality samples, the peak of the graph will veer toward QS of 20-30.




#### **FAILED ASSEMBLY REPORT**

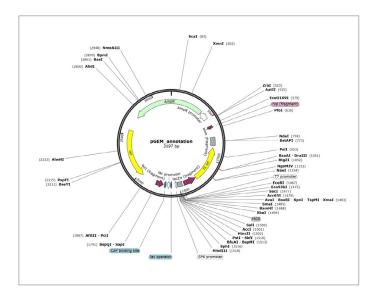
For samples that fail assembly, only the project report, sample report and raw\_fastq folders are provided. The example below shows the data provided for a failed sample report.

The length and quality distribution of raw reads will be provided dependent on the total reads attained for the sample.

As the QC for the failed sample shows below, only 3 reads were attained at varied length with low QC. The total reads, in this case, were insufficient to produce an assembly.






## **Assembled Contig Review**

#### **GENBANK**

The GenBank folder contains the annotated assembled contig.


#### **ASSEMBLY FASTA**

Review the assembled contig from the files contained in the assembly\_fasta folder.



#### **ASSEMBLY FASTQ**

Scroll though the assembled fastq files to quickly review the quality by base position for the assembled contig. Hovering over each peak provides the base position and quality score.



#### **ASSEMBLY AB1**

For Sanger-like data, an ab1 file is now available in a single file for ease of review. Mixed base positions can easily be identified by scrolling through and checking for any multiple peaks for single base positions. Easily identify any secondary peak with the color coding provided: A = green, T = red; G = black, C = blue.

As shown below, hovering over each position provides the called base and quality score.

Mixed base positions identified in the ab1 file can be further reviewed in the variation Excel file by searching for the position to evaluate exact read counts of the mixed bases.



# 5 Sample Coverage Assessment

#### **VARIATION**

The variation folder provides information on the variation of base calling in several different formats.

The {sample\_name}\_base\_count.tsv file provides the coverage score by base positions. The file also provides the spread of base calling in the assembled contig.



|    | А      | В        | С         | D        | Е   | F   | G   | Н   | I | J          | K           | L         |
|----|--------|----------|-----------|----------|-----|-----|-----|-----|---|------------|-------------|-----------|
|    | Contig | Position | Reference | Coverage | Α   | T   | G   | С   | N | Insertions | Top Inserti | Deletions |
| 2  | pGEM   | 1        | G         | 622      | 0   | 0   | 622 | 0   | 0 | 0          | -           | 0         |
| 3  | pGEM   | 2        | T         | 622      | 0   | 622 | 0   | 0   | 0 | 0          | -           | 0         |
| 4  | pGEM   | 3        | T         | 622      | 0   | 622 | 0   | 0   | 0 | 0          | -           | 0         |
| 5  | pGEM   | 4        | Α         | 623      | 623 | 0   | 0   | 0   | 0 | 1          | T(1)        | 0         |
| 6  | pGEM   | 5        | T         | 625      | 0   | 625 | 0   | 0   | 0 | 0          | -           | 0         |
| 7  | pGEM   | 6        | С         | 626      | 0   | 0   | 0   | 626 | 0 | 0          | -           | 0         |
| 8  | pGEM   | 7        | Α         | 626      | 626 | 0   | 0   | 0   | 0 | 0          | -           | 0         |
| 9  | pGEM   | 8        | С         | 626      | 0   | 0   | 1   | 623 | 0 | 0          | -           | 2         |
| 10 | pGEM   | 9        | T         | 625      | 0   | 624 | 1   | 0   | 0 | 0          | -           | 0         |
| 11 | pGEM   | 10       | С         | 627      | 0   | 0   | 5   | 622 | 0 | 2          | T(2)        | 0         |
| 12 | pGEM   | 11       | Α         | 629      | 629 | 0   | 0   | 0   | 0 | 0          | -           | 0         |
| 13 | pGEM   | 12       | T         | 630      | 0   | 630 | 0   | 0   | 0 | 0          | -           | 0         |
| 14 | pGEM   | 13       | G         | 630      | 0   | 0   | 630 | 0   | 0 | 0          | -           | 0         |
| 15 | pGEM   | 14       | G         | 631      | 0   | 0   | 630 | 1   | 0 | 0          | -           | 0         |
| 16 | pGEM   | 15       | T         | 631      | 0   | 631 | 0   | 0   | 0 | 0          | -           | 0         |

To easily identify any mixed base, high deletion or high insertion positions, we recommend evaluating the {sample\_name}\_vc.tsv file. Any base position with more than 5% variability compared to the assembled contig will be highlighted in the file.





The meaning of each acronym is listed below.

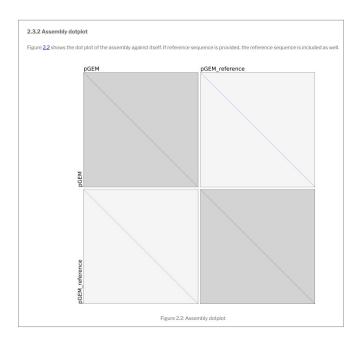
| Acronym |                          |
|---------|--------------------------|
| CHROM   | Chromosome (sample name) |
| POS     | Position                 |
| REF     | Reference Base           |
| ALT     | Variant Base             |

| Асгопут |                          |
|---------|--------------------------|
| GT      | Chromosome (sample name) |
| DP      | Position                 |
| AD      | Reference Base           |
| AF      | Variant Base             |

For the example listed below, the information provided can be interpreted as follows:

Sample-1 shows variations at positions 5970 and 6556. The primary base for both positions are G with alternative base A. For position 5970, there is coverage of 144 for base G and 46 for base A, which is a 22% variation for the position. For position 6556, the coverage for G is 130 and coverage for A is 54, which is about 26% variation for this position.

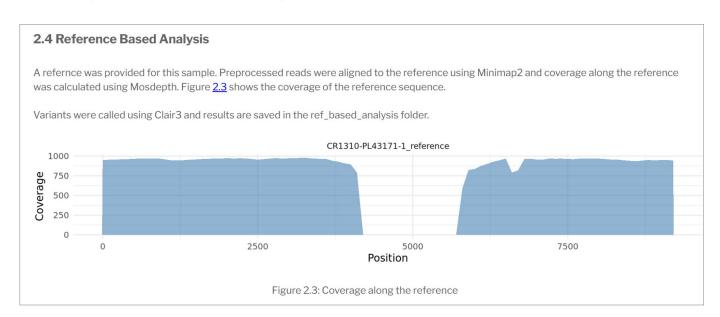
|   | Α        | В    | С   | D   | Е   | F   | G      | Н      |
|---|----------|------|-----|-----|-----|-----|--------|--------|
| 1 | CHROM    | POS  | REF | ALT | GT  | DP  | AD     | AF     |
| 2 | sample-1 | 5970 | G   | Α   | 0/1 | 205 | 144,46 | 0.2244 |
| 3 | sample-2 | 6556 | G   | Α   | 0/1 | 202 | 130,54 | 0.2673 |




## Reference-Based Analysis

If the reference file is provided on the order form, reference-based analysis will be run after the de novo assembly, to remove bias from the reference file.

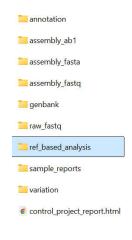
The sample report will show a dotplot and a separate coverage plot comparing the alignment between the assembled contig and reference file.


The dotplot and the coverage plot are great tools for quick check on the alignment between the assembled contig and the reference file.



#### **COVERAGE ANALYSIS**

The coverage plot provided for reference-based analysis shows alignment between the assembled contig and the reference file.


In the example shown below, there is high coverage between the assembled contig and reference file except for about a 1.5 kB missing region from the assembled contig. Possible interpretation for the results is that the insertion region for the sample did not integrate as expected.



#### **VARIANTS**

The reference-based analysis folder provides various excel files to compare the assembled contig to the reference file. Below is a snapshot of the all the files provided per sample.

| Control_asm_vs_ref.var.txt    | Variations between assembly and reference file.                      |
|-------------------------------|----------------------------------------------------------------------|
| Control_vs_ref_base_count.tsv | Base calling and count comparison between contig and reference file. |
| Control_vs_ref_vc.tsv         | Variant calling results in tab delimited text format.                |
| Control_vs_ref_vc.vcf.gz      | Variant calling results based on the reference in VCF format.        |
| Control_vs_ref_vc.vcf.gz.tbi  | Index file for the VCF file.                                         |



We recommend viewing the vs\_ref.var.txt file to review the marked variants between the assembly and the reference file. To open the file in Excel, first extract the folder and then drag the file into the Excel search window.

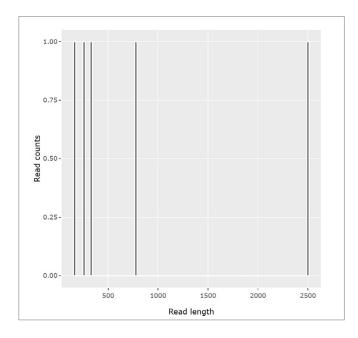
The image below shows an example variant file and lists the variants by base positions. Interpretation of a few base positions is as follows:

For positions 3484-3485, the reference file shows base calling C but the assembled contig contains G. For positions 4188-5829, the reference file shows base calling but the assembled contig shows this region as missing.

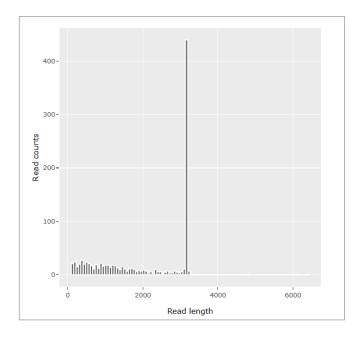
| _ A  | В                          | C     | D    | E     | F    | G          | Н          | l l               | J            | K          | L             |
|------|----------------------------|-------|------|-------|------|------------|------------|-------------------|--------------|------------|---------------|
| flag | ref                        | start | end  | depth | mapq | ref_allele | alt_allele | contig_name       | contig_start | contig_end | contig_strand |
| 2 R  | CR1310-PL43171-1 reference | 0     | 9253 |       |      |            |            |                   |              |            |               |
| 3 V  | CR1310-PL43171-1 reference | 3484  | 3485 | 1     | 60   | С          | g          | CR1310-PL43171-1  | 3484         | 3485       | +             |
| 4 V  | CR1310-PL43171-1 reference | 3485  | 3486 | 1     | 60   | t          | a          | CR1310-PL43171-2  | 3485         | 3486       | +             |
| 5 V  | CR1310-PL43171-1 reference | 3486  | 3487 | 1     | 60   | g          | С          | CR1310-PL43171-3  | 3486         | 3487       | +             |
| 5 V  | CR1310-PL43171-1 reference | 3487  | 3488 | 1     | 60   | t          | a          | CR1310-PL43171-4  | 3487         | 3488       | +             |
| 7 V  | CR1310-PL43171-1 reference | 3489  | 3490 | 1     | 60   | g          | С          | CR1310-PL43171-5  | 3489         | 3490       | +             |
| 8 V  | CR1310-PL43171-1 reference | 3733  | 3734 | 1     | 60   | a          | g          | CR1310-PL43171-6  | 3733         | 3734       | +             |
| V    | CR1310-PL43171-1 reference | 3734  | 3735 | 1     | 60   | a          | g          | CR1310-PL43171-7  | 3734         | 3735       | +             |
| 0 V  | CR1310-PL43171-1 reference | 3735  | 3736 | 1     | 60   | g          | С          | CR1310-PL43171-8  | 3735         | 3736       | +             |
| 1 V  | CR1310-PL43171-1 reference | 3736  | 3737 | 1     | 60   | С          | g          | CR1310-PL43171-9  | 3736         | 3737       | +             |
| 2 V  | CR1310-PL43171-1 reference | 4085  | 4086 | 1     | 60   | a          | g          | CR1310-PL43171-10 | 4085         | 4086       | +             |
| 3 V  | CR1310-PL43171-1 reference | 4090  | 4091 | 1     | 60   | С          | a          | CR1310-PL43171-11 | 4090         | 4091       | +             |
| 4 V  | CR1310-PL43171-1 reference | 4091  | 4092 | 1     | 60   | g          | С          | CR1310-PL43171-12 | 4091         | 4092       | +             |
| 5 V  | CR1310-PL43171-1 reference | 4188  | 5829 | 1     | 60   | cggcggcga  | _          | CR1310-PL43171-13 | 4188         | 4188       | +             |
| 6 V  | CR1310-PL43171-1 reference | 6636  | 6637 | 1     | 60   | а          | t          | CR1310-PL43171-14 | 4995         | 4996       | +             |
| 7 V  | CR1310-PL43171-1 reference | 6638  | 6643 | 1     | 60   | taaaa      | _          | CR1310-PL43171-15 | 4997         | 4997       | +             |
| 8 V  | CR1310-PL43171-1 reference | 6667  | 6674 | 1     | 60   | aaaaaaaaa  | _          | CR1310-PL43171-16 | 5021         | 5021       | +             |
| 9 V  | CR1310-PL43171-1 reference | 6706  | 6718 | 1     | 60   | aaaaaaaaaa | 4_         | CR1310-PL43171-17 | 5053         | 5053       | +             |

# 7

## **Common Factors Affecting Plasmid-EZ Assembly**


#### **CONCENTRATION AND SAMPLE QUALITY**

In the unfortunate event your sample failed to produce an assembly, the sample folder will only contain the Project Report, Sample Report and raw FASTQ reads.




To provide a fast turnaround time at a low cost, we do not perform sample QC to determine why samples failed assembly. However, the most common reason for failure is the sample not meeting the required 50 ng/ul concentration. Low concentrations may lead to increased fragmentation during library preparation and/or a low number of reads generated for the sample. We strongly recommend checking the concentration of your samples on a Qubit or equivalent before sending samples to us to reduce the chance of failure.

Below on the left is the read length graph for a sample that failed and on the right is one that worked. Samples with a clear plasmid peak like on the right tend to assemble, while samples with low read count and no clear contig tend to fail assembly.



The graph above shows presence of three lengths with single read count. The read counts and distribution is inadequate for assembly and suggests low sample concentration.



The length distribution in the graph above shows a primary peak around 3 kB with very low read count or other fragments. This distribution highlights the presence of a single contig at high quality.

#### HOMOPOLYMERIC REPETITIVE REGIONS

Plasmid-EZ may at times show insertion/deletion following a homopolymeric repetitive region. In such cases, please review the variation file for the position to confirm possible insertion/deletion at the region. The example below showcases insertion of an additional A at the start of the homopolymeric region. For further confirmation, we recommend running a Sanger sequencing order for the regions to ensure complete coverage.

The base\_count.tsv example below shows a homopolymeric repetitive region. Though a few positions show possible insertions, only position 5053 contains a significant number of insertions.

| A                    | В        | С         | D        | Е   | F   | G |   | Н | I | J          | K             | L         |
|----------------------|----------|-----------|----------|-----|-----|---|---|---|---|------------|---------------|-----------|
| 1 Contig             | Position | Reference | Coverage | A   | T   | G | C |   | N | Insertions | Top Insertion | Deletions |
| 2 CR1310-PL43171-1   | 5052     | T         | 776      | 55  | 718 |   | 0 | 0 | 0 | 10         | AAA (2)       | 3         |
| 3 CR1310-PL43171-2   | 5053     | T         | 779      | 84  | 682 |   | 1 | 0 | 0 | 267        | AAA (50)      | 12        |
| 4 CR1310-PL43171-3   | 5054     | Α         | 903      | 569 | 3   |   | 0 | 0 | 0 | 0          | _             | 331       |
| 5 CR1310-PL43171-4   | 5055     | Α         | 619      | 619 | 0   |   | 0 | 0 | 0 | 0          | _             | 0         |
| 6 CR1310-PL43171-5   | 5056     | Α         | 666      | 666 | 0   |   | 0 | 0 | 0 | 0          | _             | 0         |
| 7 CR1310-PL43171-6   | 5057     | Α         | 697      | 697 | 0   |   | 0 | 0 | 0 | 0          | _             | 0         |
| 8 CR1310-PL43171-7   | 5058     | Α         | 736      | 736 | 0   |   | 0 | 0 | 0 | 1          | T (1)         | 0         |
| 9 CR1310-PL43171-8   | 5059     | Α         | 762      | 761 | 1   |   | 0 | 0 | 0 | 3          | TTTT (2)      | 0         |
| 10 CR1310-PL43171-9  | 5060     | Α         | 785      | 783 | 2   |   | 0 | 0 | 0 | 0          | _             | 0         |
| 11 CR1310-PL43171-10 | 5061     | Α         | 798      | 797 | 1   |   | 0 | 0 | 0 | 0          | _             | 0         |
| 12 CR1310-PL43171-11 | 5062     | Α         | 813      | 811 | 2   |   | 0 | 0 | 0 | 0          | _             | 0         |
| 13 CR1310-PL43171-12 | 5063     | Α         | 828      | 825 | 3   |   | 0 | 0 | 0 | 1          | TT (1)        | 0         |
| 14 CR1310-PL43171-13 | 5064     | Α         | 842      | 836 | 6   |   | 0 | 0 | 0 | 1          | TTTTT (1)     | 0         |

The vc.tsv for the same sample only highlights position 5053, as this position showed significant insertion. According to this chart, position 5053 is T but an alternative for this position is TAAA with about 5% variation.

| À | Α                | В    | ВС  |      | E   | F   | G     | Н     |
|---|------------------|------|-----|------|-----|-----|-------|-------|
| 1 | CHROM            | POS  | REF | ALT  | GT  | DP  | AD    | AF    |
| 2 | CR1310-PL43171-1 | 5053 | T   | TAAA | 0/1 | 884 | 80,46 | 0.052 |

#### **METHYLATION SITES**

GATC, CCAGG and CCTGG sites are methylation sites in *E. coli*. These sites may show discrepancy and will require review of the variation file. If discrepancy is due to methyl GATC site, the variation file will show half A/half G for the position. In such cases, Sanger sequencing follow-up may be needed for further confirmation of the base position.

## HAVE QUESTIONS? Contact us.

Email DNAseq ■azenta.com

Call 1-888-229-3682 ext 2

Or reach out on LiveChat

