GUIDE

Plasmid-EZ Quick Start Guide

azenta.com

Table of Contents

1. Getting Started	03
Viewing project report	
Opening sample reports	
2. Viewing Your Plasmid	04
Annotation map of longest contig	
Opening the GenBank file in SnapGene Viewer	
Viewing the nucleotide sequence, amino acid sequence,	
and annotation	
Viewing the annotation parts in Excel	
Opening the FASTA file in a text editor	
3. Assessing the Quality of Your Data	07
Viewing the read-length distribution and quality scores	
Viewing per base confidence scores	
4. Variant Calling	09
Looking at variants by base	
Looking at multiple contigs and generating annotations	
5. Why Did My Sample Fail to Produce Assembly?	11

azenta.com

1 Getting Started

To start, click on the *30-xxxxxxx.QC.html* file. This file provides an overall QC report, has links for individual sample reports, and acts as a launching point for accessing all reports.

🧵 images	\odot	5/16/2023 6:47 PM	File folder	
PGEM	\odot	5/26/2023 10:39 PM	File folder	
PGEM-1	\odot	6/15/2023 3:53 PM	File folder	
© 30-00000001-QC.html	\odot	5/16/2023 6:44 PM	Chrome HTML Document	3 KB
Plasmid-EZ Bioinformatics FAQ.pdf	\odot	5/16/2023 6:42 PM	Adobe Acrobat Document	186 KB

From the QC report, you can click on the sample name to open the sample report.

							Plasmid-EZ: control							
1. Quali _{Sample}	ty assessme Min_length	ent of seque Mean_length	ncing: Max_length	Q1_length	Median_length	Q3_length	N50_length	Min_qscore	Mean_qscore	Max_qscore	Q1_qscore	Median_qscore	Q3_qs	
PGEM	228	2718.22	5323	2102.5	3285	3302	3294	9.28	15.10	18.61	14.09	15.57	16.47	
<u>PGEM-</u> 1	224	2737.46	9899	1899	3288	3306.75	3300	9.27	14.95	18.50	13.94	15.49	16.50	
2. Ouali	tv assessme	ent of assem	blv:										•	

The following table reports statistics on mapping of raw sequencing reads to the de novo assembled contig.

 Sample
 Total_Reads
 Mapped_reads
 Unmapped_reads
 Supplementary_mappings*

 PGEM_
 287
 281 (97.9%)
 6 (2.09%)
 212 (73.86%)

 PGEM-1
 190
 183 (96.31%)
 7 (3.68%)
 109 (57.36%)

* "Supplementary" reads are those reads that span the 3-prime - 5-prime boundary of the linearized contig sequence. Calculation of percentages are based on the "Total_Reads" value reported.

Individual sample reports can also be accessed by going to the sample folder.

🧯 images	\odot	5/16/2023 6:47 PM	File folder	
PGEM	\odot	5/26/2023 10:39 PM	File folder	
PGEM-1	\odot	6/15/2023 3:53 PM	File folder	
© 30-00000001-QC.html	\odot	5/16/2023 6:44 PM	Chrome HTML Document	3 KB
🛃 Plasmid-EZ Bioinformatics FAQ.pdf	\odot	5/16/2023 6:42 PM	Adobe Acrobat Document	186 KB

Then, click on the AssemblyReport.html file.

📜 images	\odot	5/16/2023 6:47 PM	File folder	
PGEM.fastq.gz	\odot	5/16/2023 6:42 PM	GZ File	623 KB
PGEM_allContigs.fasta	\odot	5/16/2023 6:42 PM	FASTA DNA	7 KB
PGEM_longestContig.fasta	\odot	5/16/2023 6:42 PM	FASTA DNA	4 KB
PGEM_longestContig.fastq	\odot	5/16/2023 6:42 PM	FASTQ Sequence Trace	7 KB
PGEM_longestContig_annot.csv	\odot	5/16/2023 6:42 PM	Microsoft Excel Comma Separat	5 KB
PGEM_longestContig_annot.gbk	\odot	5/16/2023 6:42 PM	GenBank DNA	9 KB
PGEM_longestContig_annot.html	\odot	5/16/2023 6:42 PM	Chrome HTML Document	75 KB
PGEM_longestContig-readCounts-variation.csv	\odot	5/16/2023 6:42 PM	Microsoft Excel Comma Separat	97 KB
PGEM_longestContig-readCounts-variation.xls	\odot	5/16/2023 6:42 PM	Microsoft Excel 97-2003 Worksh	604 KB
PGEM-AssemblyReport.html	\odot	5/16/2023 6:42 PM	Chrome HTML Document	84 KB
summary_PGEM.html	\odot	5/16/2023 6:42 PM	Chrome HTML Document	3,815 KB

2 Viewing Your Plasmid

In the sample report, the first thing you will see is an annotated plasmid map for the longest contig assembled. Hovering over the map will pull up a summary of the region, which is also listed in the table below the map.

Data extracted from PGEM_longestContig_annot.csv

Feature	Туре	percent identity	percent match length	Description
f1 ori	rep_origin	100.0	100.0	fl bacteriophage origin of replication; arrow indicates direction of (+) strand synthesis
AmpR promoter	promoter	100.0	100.0	bla
AmpR	CDS	99.76	100.0	β-lactamase; bla; confers resistance to ampicillin
ori	rep_origin	99.83	100.0	high-copy-number ColE1/pMB1/pBR322/pUC origin of replication
MCS	misc_feature	100.0	100.0	pUC18/19 multiple cloning site
lac promoter	promoter	100.0	100.0	promoter for the E. coli lac operon
CAP binding site	protein_bind	100.0	100.0	CAP binding activates transcription in the presence of cAMP. E. coli catabolite activator protein
T7 promoter	promoter	100.0	100.0	promoter for bacteriophage T7 RNA polymerase
SP6 promoter	promoter	100.0	100.0	promoter for bacteriophage SP6 RNA polymerase
lac operator	protein_bind	100.0	100.0	The lac repressor binds to the lac operator to inhibit transcription in E. coli. This inhibition can be relieved by adding lactose or isopropyl-β-D- thiogalactopyranoside (IPTG). lac repressor encoded by lacI
lacZα	CDS	100.0	90.80	LacZ α fragment of β -galactosidase; lacZ fragment
bom	misc_feature	100.0	70.92	basis of mobility region from pBR322
lacI	CDS	100.0	8.58	lac repressor; lacl; The lac repressor binds to the lac operator to inhibit transcription in E. coli. This inhibition can be relieved by adding lactose or isopropyl-β-D-thiogalactopyranoside (IPTG).
rop	CDS	100.0	18.75	Rop protein

A copy of the annotation map and sequence are provided in the sample folder in GenBank format. This file can be opened in any plasmid viewer program like <u>SnapGene Viewer</u>.

📕 images	\odot	5/16/2023 6:47 PM	File folder	
PGEM.fastq.gz	\odot	5/16/2023 6:42 PM	GZ File	623 KB
🕐 PGEM_allContigs.fasta	\odot	5/16/2023 6:42 PM	FASTA DNA	7 KB
PGEM_longestContig.fasta	\odot	5/16/2023 6:42 PM	FASTA DNA	4 KB
PGEM_longestContig.fastq	\odot	5/16/2023 6:42 PM	FASTQ Sequence Trace	7 KB
PGEM_longestContig_annot.csv	\odot	5/16/2023 6:42 PM	Microsoft Excel Comma Separat	5 KB
PGEM_longestContig_annot.gbk	\odot	5/16/2023 6:42 PM	GenBank DNA	9 KB
PGEM_longestContig_annot.html	\odot	5/16/2023 6:42 PM	Chrome HTML Document	75 KB
PGEM_longestContig-readCounts-variation.csv	\odot	5/16/2023 6:42 PM	Microsoft Excel Comma Separat	97 KB
PGEM_longestContig-readCounts-variation.xls	\odot	5/16/2023 6:42 PM	Microsoft Excel 97-2003 Worksh	604 KB
OPGEM-AssemblyReport.html	\odot	5/16/2023 6:42 PM	Chrome HTML Document	84 KB
Summary_PGEM.html	\odot	5/16/2023 6:42 PM	Chrome HTML Document	3,815 KB

Viewing Your Plasmid (Continued)

Opening the GenBank file (.gbk) in SnapGene Viewer will present you with the following screen upon opening. This shows you a map from the report as well as all restriction enzyme sites.

Clicking the sequence tab at the bottom of the screen (highlighted in a red box below) will open the nucleotide sequence, along with the annotation and amino acid sequence for all coding regions.

Viewing Your Plasmid (Continued)

A copy of the annotation parts, as well as the sequence for each part, can be found in the *longestContig_annot.csv* file that can be opened in Excel.

1	images						\odot		5/16/	2023 6:47 PM	1		File folder					
4	PGEM.fastq	.gz					\odot		5/16/	2023 6:42 PM	1		GZ File				623 K	в
	PGEM_allCo	ontigs.fasta					\odot		5/16/	2023 6:42 PM	1		FASTA DNA				7 K	в
1	PGEM_long	estContig.fa	ista				\odot		5/16/	2023 6:42 PM	1.		FASTA DNA				4 K	в
0	PGEM_long	estContig.fa	istq				\odot	⊘ 5/16/2023 6:42 PM				FASTQ Sequence Trace				7 K	в	
83	PGEM_long	estContig_a	nnot.csv				\odot		5/16/	2023 6:42 PM	1		Microsoft	Excel Com	ma Separat		5 K	В
	PGEM_long	estContig_a	nnot.gbk				\odot		5/16/	2023 6:42 PM	1		GenBank I	DNA			9 K	в
(PGEM_longestContig_annot.html						\odot		5/16/	2023 6:42 PM	1		Chrome H	ITML Docu	ment		75 K	В
8	PGEM_longestContig-readCounts-variation.csv						\odot		5/16/	2023 6:42 PM	1		Microsoft	Excel Com	ma Separat		97 K	в
8	PGEM_longestContig-readCounts-variation.xls						0		5/16/	2023 6:42 PM	1		Microsoft	Excel 97-20	03 Worksh		604 K	в
6	PGEM-AssemblyReport.html						\odot		5/16/	2023 6:42 PN	1		Chrome H	HTML Docur	ment		84 K	В
6	Summary PGEM.html						\odot		5/16/	2023 6:42 PM	1		Chrome H	HTML Docur	ment		3,815 K	в
-																		
4	A	В	С	D	E	F	G	н	1	J	K	L	M	N	0	Р	Q	R
1	sseqid	start locat	end locati	strand	percent id	full length	length of	percent m	fragment	database	Feature	Туре	Descriptio	sequence	8			
2	t1_ori	1262	1691	1	. 100	429	429	100	FALSE	snapgene	f1 ori	rep_origi	11 bacteri	ACGCGC	CCTGTAGCO	GCGCATI	AAGCGCGG	GCGGGTG
3	Ampk_pro	2049	2154	1	00 769	105	105	100	FALSE	snapgene	Ampk pro	promoter	Dia 17 Jactary	CGCGGGA		IGITIAL	TCCCCCTTA	TACATICA
4	Ampk_(2)	2134	577	1	99.708	599	590	100	FALSE	snapgene	Ampk	ren origi	high-conv	TIGAGAT	CCTITIT	TECETE	TAATCTGCI	Inccent
6	MCS (8)	1021	1078	-1	100	57	57	100	FALSE	snapgene	MCS	misc feat	nUC18/19	GAATTCO	AGCTCGGI	TACCCGG	GATCCTCT	AGAGTO
7	lac promo	900	931	1	100	31	31	100	FALSE	snapgene	lac promo	promoter	promoter	TTTACAC	TITATGCT	ICCGGCTC	GTATGTTG	AGAGICO
8	CAP bind	864	886	1	100	22	22	100	FALSE	snapgene	CAP bind	protein b	CAP bindi	TAATGTO	AGTTAGCT	CACTCAT		
9	T7_promo	1080	1099	-1	100	19	19	100	FALSE	snapgene	T7 promo	t promoter	promoter	ТААТАС	GACTCACTA	TAGG		
10	SP6_prom	996	1015	1	100	19	19	100	FALSE	snapgene	SP6 prom	promoter	promoter	ATTTAGO	TGACACTA	TAGA		
11	lac_opera	938	955	1	. 100	17	17	100	FALSE	snapgene	lac operat	t protein_b	The lac re	TTGTGAG	CGGATAA	CAA		
12	lacZ_alpha	1101	1259	1	100	174	158	90.8046	TRUE	snapgene	lacZî±	CDS	LacZî± fra	ATTCACT	GGCCGTCG	TTTTACA	ACGTCGTGA	CTGGGA
13	3 bom	1718	1818	-1	100	141	100	70.92199	TRUE	snapgene	bom	misc_feat	basis of m	стобстт	AACTATGC	GGCATCA	GAGCAGAT	TGTACTG
14	laci	759	852	1	100	1083	93	8.587258	TRUE	snapgene	laci	CDS	lac repres	GCGCCCA	ATACGCA	AACCGCC	TCTCCCCGC	GCGTTGG
15	i rop	1919	1955	-1	100	192	36	18.75	TRUE	snapgene	rop	CDS	Rop prote	CTCGCGC	GTTTCGGT	GATGACG	GTGAAAAC	CTCTGA

Details for the meaning of the headers for this and all tables can be found in the *Plasmid-EZ_ Bioinformatics.FAQ.pdf* file.

📕 images	\odot	5/16/2023 6:47 PM	File folder	
PGEM	\odot	5/26/2023 10:39 PM	File folder	
PGEM-1	\odot	6/15/2023 3:53 PM	File folder	
© 30-00000001-QC.html	\odot	5/16/2023 6:44 PM	Chrome HTML Document	3 KB
Plasmid-EZ Bioinformatics FAQ.pdf	\odot	5/16/2023 6:42 PM	Adobe Acrobat Document	186 KB

We also provide a simple FASTA-formatted file with the sequence of the longest contig in the *longestContig.fasta* file. This file can be opened using software such as SnapGene Viewer, Geneious, etc., as well as any text viewer including Microsoft Word.

Assessing the Quality of Your Data

Going back to the sample report (*AssemblyReport.html*), you will see the sequencing quality metrics, including the read-length distribution (red graph), the Q-score distribution (blue graph), and the percentage map reads (section 3).

3. Mapping of sequencing reads to the assembly

The following table reports statistics on mapping of raw sequencing reads to the de novo assembled contig.

 Total_Reads
 mapped_reads
 unmapped_reads
 supplementary_mappings*

 287
 3
 281 (97.9%)
 6 (2.09%)
 212 (73.86%)

 * "Supplementary" reads are those reads that span the 3-prime - 5-prime boundry of the linearized contig sequence.
 5

Calculation of percentages are based on the "Total_Reads" value reported.

WHAT YOU WANT TO SEE:

- **1.** A clear plasmid peak matching your assembly length
- 2. Most of the reads having a Q > 10
- 3. Most of your reads mapping to the assembly

 \uparrow

Assessing the Quality of Your Data (Continued)

We also provide a FASTQ file with a confidence Q score per base that can be viewed in SnapGene Viewer or a similar program.

🧯 images	\odot	5/16/2023 6:47 PM	File folder	
a) PGEM.fastq.gz	\odot	5/16/2023 6:42 PM	GZ File	623 KB
PGEM_allContigs.fasta	\odot	5/16/2023 6:42 PM	FASTA DNA	7 KB
PGEM_longestContig.fasta	\odot	5/16/2023 6:42 PM	FASTA DNA	4 KB
PGEM_longestContig.fastq	\odot	5/16/2023 6:42 PM	FASTQ Sequence Trace	7 KB
PGEM_longestContig_annot.csv	\odot	5/16/2023 6:42 PM	Microsoft Excel Comma Separat	5 KB
PGEM_longestContig_annot.gbk	\odot	5/16/2023 6:42 PM	GenBank DNA	9 KB
PGEM_longestContig_annot.html	\odot	5/16/2023 6:42 PM	Chrome HTML Document	75 KB
PGEM_longestContig-readCounts-variation.csv	\odot	5/16/2023 6:42 PM	Microsoft Excel Comma Separat	97 KB
PGEM_longestContig-readCounts-variation.xls	\odot	5/16/2023 6:42 PM	Microsoft Excel 97-2003 Worksh	604 KB
PGEM-AssemblyReport.html	\odot	5/16/2023 6:42 PM	Chrome HTML Document	84 KB
summary_PGEM.html	\odot	5/16/2023 6:42 PM	Chrome HTML Document	3,815 KB

The higher the bar, the higher the confidence for the base call at this position. If a bar is lower, it could indicate either low-quality sequence data or the presence of a polymorphism at the site.

4 Variant Calling

We provide a variant Excel file (*longestContig-readCounts-variation.xls*) that has the number of reads for each base.

📕 images	\odot	5/16/2023 6:47 PM	File folder	
PGEM.fastq.gz	\odot	5/16/2023 6:42 PM	GZ File	623 KB
🕐 PGEM_allContigs.fasta	\odot	5/16/2023 6:42 PM	FASTA DNA	7 KB
PGEM_longestContig.fasta	\odot	5/16/2023 6:42 PM	FASTA DNA	4 KB
PGEM_longestContig.fastq	\odot	5/16/2023 6:42 PM	FASTQ Sequence Trace	7 KB
PGEM_longestContig_annot.csv	\odot	5/16/2023 6:42 PM	Microsoft Excel Comma Separat	5 KB
PGEM_longestContig_annot.gbk	\odot	5/16/2023 6:42 PM	GenBank DNA	9 KB
PGEM_longestContig_annot.html	\odot	5/16/2023 6:42 PM	Chrome HTML Document	75 KB
PGEM_longestContig-readCounts-variation.csv	\odot	5/16/2023 6:42 PM	Microsoft Excel Comma Separat	97 KB
PGEM_longestContig-readCounts-variation.xls	\odot	5/16/2023 6:42 PM	Microsoft Excel 97-2003 Worksh	604 KB
PGEM-AssemblyReport.html	\odot	5/16/2023 6:42 PM	Chrome HTML Document	84 KB
summary_PGEM.html	\odot	5/16/2023 6:42 PM	Chrome HTML Document	3,815 KB

Any bases with a second nucleotide represented in >10% of reads are highlighted in yellow. This file also provides you with the number of reads that have insertions or deletions for that base.

1	A	В	C	D	E	F	G	Н	1	J	K
1	AZENTA LIF	E SCIENCES -	Plasmid-E	Z							
2											
3	Color Legend:										
4		>= 10% deviation									
5]	These	data r	elate t	to *rav	w* sequer	cing reads	
6	Position	Reference	Coverage	Α	т	G	С	Ν	Insertions	Top Insertion	Deletions
7	1	Т	199	0	199	0	0	0	0		0
8	2	Т	202	0	202	0	0	0	0	-	0
9	3	Т	204	0	204	0	0	0	0	-	0
10	4	Т	205	0	204	0	0	0	0	-	0
11	5	C	205	0	0	0	192	0	1	T (1)	0
12	6	Т	206	0	206	0	0	0	0	-	0
13	7	G	207	50	0	153	0	0	0	-	2
14	8	С	205	0	0	0	201	0	1	CA (1)	1

Note: This file is corrected for read quality; an uncorrected raw number of reads with each base can be found in the *readCounts-variantion.csv* file.

4

Variant Calling (Continued)

There is also a potential for multiple assemblies to be created resulting in multiple contigs. If this happens, an *allContigs.fasta* file will be created with all the contigs assembled.

📕 images	\odot	5/16/2023 6:47 PM	File folder	
PGEM.fastq.gz	\odot	5/16/2023 6:42 PM	GZ File	623 KB
PGEM_allContigs.fasta	\odot	5/16/2023 6:42 PM	FASTA DNA	7 KB
PGEM_longestContig.fasta	\odot	5/16/2023 6:42 PM	FASTA DNA	4 KB
PGEM_longestContig.fastq	\odot	5/16/2023 6:42 PM	FASTQ Sequence Trace	7 KB
PGEM_longestContig_annot.csv	\odot	5/16/2023 6:42 PM	Microsoft Excel Comma Separat	5 KB
PGEM_longestContig_annot.gbk	\odot	5/16/2023 6:42 PM	GenBank DNA	9 KB
PGEM_longestContig_annot.html	\odot	5/16/2023 6:42 PM	Chrome HTML Document	75 KB
PGEM_longestContig-readCounts-variation.csv	\odot	5/16/2023 6:42 PM	Microsoft Excel Comma Separat	
PGEM_longestContig-readCounts-variation.xls	\odot	5/16/2023 6:42 PM	Microsoft Excel 97-2003 Worksh	
PGEM-AssemblyReport.html	\odot	5/16/2023 6:42 PM	Chrome HTML Document	84 KB
summary_PGEM.html	\odot	5/16/2023 6:42 PM	Chrome HTML Document	3,815 KB

If you open this file in SnapGene Viewer, you will see a list of all contigs, as well as some details from the assembler.

File Name

PGEM.tig00000003 len=3197 reads=125 class=contig suggestRepeat=yes suggestBubble=no suggestCircular=yes trim=0-3197 PGEM.tig00000004 len=3146 reads=1 class=contig suggestRepeat=yes suggestBubble=no suggestCircular=no trim=0-3146

In the case above, two contigs were assembled with one generated with 125 reads and a suggested complete circular contig, while the other is created with a single read and is not a complete circular sequence. Thus, the second contig is likely an artifact of assembly and not a true variant.

If in contrast, you see multiple circular contigs with a high number of reads used to generate the contig (e.g., > 30), then this might represent multiple plasmid variants in your sample.

If you want to see the annotation for any of the other contigs, you can simply copy and paste the sequence into <u>Plannotate</u>. This will generate an annotation with a GenBank file and a CSV file with the annotation parts.

If you see all contigs represented by a few reads, then this might indicate a lower quality assembly for your sample.

5. Why Did My Sample Fail to Produce an Assembly?

In the unfortunate event your sample failed to produce an assembly, the sample folder will only contain the raw FASTQ reads and a summary report that includes the read length and quality of the data.

🧵 images	\odot	5/26/2023 10:49 PM	File folder
PGEM-1.fastq.gz	\odot	5/16/2023 6:42 PM	GZ File
summary_PGEM-1.html	\odot	5/16/2023 6:42 PM	Chrome HTML Document

To provide a fast turnaround time at a low cost, we do not perform sample QC to determine why samples failed assembly. However, the most common reason for failure is the sample not meeting the required 50 ng/ul concentration. Low concentrations may lead to increased fragmentation during library preparation and/or a low number of reads generated for the sample. We strongly recommend checking the concentration of your samples on a Qubit or equivalent before sending samples to us to reduce the chance of failure.

Below on the left is the read length graph for a sample that failed and on the right is one that worked. Samples with a clear plasmid peak like on the right tend to assemble, while samples without full-length plasmid reads tend to fail assembly.

© 2023 Azenta US, Inc. All rights reserved. All trademarks are property of Azenta US, Inc. unless otherwise specified. 15016-M&G-2 0623